AskDefine | Define gravitons

Dictionary Definition

gravitons n : a gauge boson that mediates the (extremely weak) gravitational interactions between particles

User Contributed Dictionary



  1. Plural of graviton

Extensive Definition

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravity in the framework of quantum field theory. If it exists, the graviton must be massless (because the gravitational force has unlimited range) and must have a spin of 2 (because gravity is a second-rank tensor field).
Gravitons are postulated because of the great success of the quantum field theory (in particular, the Standard Model) at modeling the behavior of all other forces of nature with similar particles: electromagnetism with the photon, the strong interaction with the gluons, and the weak interaction with the W and Z bosons. In this framework, the gravitational interaction is mediated by gravitons, instead of being described in terms of curved spacetime as in general relativity. In the classical limit, both approaches give identical results, including Newton's law of gravitation.
However, attempts to extend the Standard Model with gravitons run into serious theoretical difficulties at high energies (processes with energies close to or above the Planck scale) because of infinities arising due to quantum effects (in technical terms, gravitation is nonrenormalizable.) Some proposed theories of quantum gravity (in particular, string theory) address this issue. In string theory, gravitons (as well as the other particles) are states of strings rather than point particles, and then the infinities do not appear, while the low-energy behavior can still be approximated by a quantum field theory of point particles. In that case, the description in terms of gravitons serves as a low-energy effective theory.

Gravitons and models of quantum gravity

When describing graviton interactions, the classical theory (i.e. the tree diagrams) and semiclassical corrections (one-loop diagrams) behave normally, but Feynman diagrams with two (or more) loops lead to ultraviolet divergences; that is, infinite results that cannot be removed because the quantized general relativity is not renormalizable, unlike quantum electrodynamics. In popular terms, the discreteness of quantum theory is not compatible with the smoothness of Einstein's general relativity. These problems, together with some conceptual puzzles, led many physicists to believe that a theory more complete than just general relativity must regulate the behavior near the Planck scale. Superstring theory finally emerged as the most promising solution; it is the only known theory with finite corrections to graviton scattering at all orders.
String theory predicts the existence of gravitons and their well-defined interactions which represents one of its most important triumphs. A graviton in perturbative string theory is a closed string in a very particular low-energy vibrational state. The scattering of gravitons in string theory can also be computed from the correlation functions in conformal field theory, as dictated by the AdS/CFT correspondence, or from Matrix theory.
An interesting feature of gravitons in string theory is that, as closed strings without endpoints, they would not be bound to branes and could move freely between them. If we live on a brane (as hypothesized by some theorists) this "leakage" of gravitons from the brane into higher-dimensional space could explain why gravity is such a weak force, and gravitons from other branes adjacent to our own could provide a potential explanation for dark matter. See brane cosmology for more details.
Some proposed quantum theories of gravity do not predict a graviton.

Experimental observation

Unambiguous detection of individual gravitons, though not prohibited by any fundamental law, is impossible with any physically reasonable detector. The reason is simply the extremely low cross section for the interaction of gravitons with matter. For example, a detector designed to measure the mass of Jupiter with 100% efficiency, placed in close orbit around a neutron star, would only be expected to observe one graviton every 10 years, even under the most favorable conditions. It would be impossible to discriminate these events from the background of neutrinos, and it would be impossible to shield the neutrinos without the shielding material collapsing into a black hole.

Is gravity like the other forces?

Some question the analogy which motivates the introduction of the graviton. Unlike the other forces, gravitation plays a special role in general relativity in defining the spacetime in which events take place. Because it does not depend on a particular spacetime background, general relativity is said to be background independent. In contrast, the Standard Model is not background independent. In other words, general relativity and the standard model are incompatible. A theory of quantum gravity is needed in order to reconcile these differences. Whether this theory should itself be background independent, or whether the background independence of general relativity arises as an emergent property is an open question. The answer to this question will determine whether gravity plays a "special role" in this underlying theory similar to its role in general relativity.


gravitons in Bosnian: Graviton
gravitons in Bulgarian: Гравитон
gravitons in Catalan: Gravitó
gravitons in Czech: Graviton
gravitons in Danish: Graviton
gravitons in German: Graviton
gravitons in Modern Greek (1453-): Βαρυτόνιο
gravitons in Spanish: Gravitón
gravitons in Persian: گراویتون
gravitons in French: Graviton
gravitons in Galician: Gravitón
gravitons in Korean: 중력자
gravitons in Croatian: Graviton
gravitons in Italian: Gravitone
gravitons in Hebrew: גרביטון
gravitons in Latin: Graviton
gravitons in Latvian: Gravitons
gravitons in Lithuanian: Gravitonas
gravitons in Hungarian: Graviton
gravitons in Dutch: Graviton
gravitons in Japanese: 重力子
gravitons in Norwegian: Graviton
gravitons in Low German: Graviton
gravitons in Polish: Grawiton
gravitons in Portuguese: Gráviton
gravitons in Romanian: Graviton
gravitons in Russian: Гравитон
gravitons in Simple English: Graviton
gravitons in Slovak: Gravitón
gravitons in Slovenian: Graviton
gravitons in Finnish: Gravitoni
gravitons in Swedish: Graviton
gravitons in Turkish: Graviton
gravitons in Ukrainian: Гравітон
gravitons in Chinese: 引力子
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1